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“True ”ε

Quantifying Privacy  - What is ?ε

• Proofs provide upper bounds

• Attacks provide lower bounds

Less Privacy

More Privacy

Existing gaps are 100x+

Not very useful in practice

Our Work - Poisoning-Based Auditing
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Results

• Improvements over existing privacy attacks: factor of 5-1000+

• Decreased gap to upper bound to 5-10x in some cases

• Parameter dependence - clipping norm and random initialization

DP-SGD Tailored Poisoning Attack
• Existing poisoning moves in high variance directions

• SGD obscures attacks in high variance directions

• Our attack moves exclusively in low variance directions

Existing Poisoning Attacks - Backdoor
• Inject a “trigger” into the model

• Adding the trigger at test time changes classification

• Effectiveness measured by trigger success rate
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Theorem: If poisoning set is size , then the 
learning algorithm is at least -DP.
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Differential Privacy and DP-SGD
Definition: Algorithm  is -DP if for any two adjacent 
datasets , , .
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